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The birthday problem
(program “birthday”)

What is the probability that two or more people among a roomful
of 25 have the same birthday? (In technical terms, this is the
probability of duplication in a multi-outcome sample from an
infinite universe. This famous examination question used in
courses on probability shows how powerful and simple the
resampling method is.)

We might examine a random number table, select the first 25
numbers falling between 001 and 365 (representing the days in the
year), and record whether or not there is a match among the 25. We
would then repeat the process enough times to get a reasonably
stable probability estimate. Pose the question to a mathematical
friend of yours. After watching her sweat, compare your answer to
hers. You will find the correct answer very surprising. People who
know how this problem works have been known to take unfair
advantage of this knowledge by making and winning big bets.

The birthday problem is amazingly simple with RESAMPLING
STATS. First, GENERATE 25 numbers between 1 and 365 (the
number of days in a typical year) and store the results in a.

GENERATE 25 1,365 a

Next, using the MULTIPLES command, check to see whether any
two or more people have the same birthday by searching for
duplicate (or triplicate, quadruplicate, etc.) numbers and put the
result in b.

MULTIPLES a >=2 b

We want to keep track of the individual results b and keep them in
our special “score” vector scrboard. (Vector names can have up to
8 characters.)

SCORE b scrboard

Let’s review the program to see where the REPEAT, END “loop”
goes.

GENERATE 25 1,365 a

MULTIPLES a >=2 b

SCORE b scrboard

Resampling Stats
Illustrations
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The loop begins before GENERATE and ends after SCORE. We
REPEAT this loop 1000 times (or more). So, insert a line before
GENERATE — put your cursor at the beginning of the GENER-
ATE line and press return — and type in the REPEAT command.

REPEAT 1000

Then END the loop after SCORE.

END

Finally, we count how often scrboard recorded a value of 1 or
more, indicating a trial with at least 1 replicated birthday, and
divide by 1000 to express the result in conventional proportion
terms. (Put another way, we look for rooms of 25 people where at
least  1 birthday is shared.) Then we PRINT the result to the
screen.

COUNT scrboard >=1 k

DIVIDE k 1000 prob

PRINT prob

Now try running the program. The answer may surprise you.



25Resampling Stats Illustrations

This example might also be used with the later examples on
hypothesis testing.

In the first three games of the 1988 NBA playoff series between
Boston and Detroit, Larry Bird only got baskets 20 of the 57 shots
he attempted in the first three games. Everybody said that Bird,
normally a 48% shooter, was in a slump. The Washington Post said
(May 30, 1988, p. D4):

“Larry Bird is so cold he couldn’t throw a beachball in the ocean…
They fully expect Bird to come out of his horrendous shooting
slump. It is safe to assume that if Bird doesn’t shake out of his
slump Monday, it will be difficult and probably even impossible
for Boston…”

By “slump” people meant that the chance of Bird scoring a basket
during that period was lower than usual. And in such a case,
coaches and players usually conclude that the player should take
fewer shots than usual because he does not have a “hot hand.”

Another possibility is that Bird’s performance was not extraordi-
nary and is the sort of thing that could happen just by chance due
to ordinary random variability. So let’s see just how unusual it
would be for a slot-machine that hits 48 percent of the time to
show a “slump” like Bird’s.

Using RESAMPLING STATS, first we set up 1000 trials of this
experiment.

This experiment consists of generating, for each trial, a series of 57
“shots,” represented by 57 numbers randomly generated between
1 and 100.

REPEAT 1000

GENERATE 57 1,100 a

Next we count how many of those 57 shots were “baskets,” that is,
were between 1 and 48 (remember that Bird is a 48% shooter on
average). This constitutes our “core procedure,” highlighted above
and below, and you could choose to use the “Repeat Wizard” and
“Results Wizard” to complete the job.  Instead, we will show the
commands to do the repetition and scoring tasks.

COUNT a between 1 48 b

Next, we SCORE the result, and END the REPEAT loop.

SCORE b scrboard

END

Quality control
(program: “larybird”)
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Figure 1: Frequency distribution, number of baskets in 57 shots

Finally, we count the number of times that the result was 20
baskets or fewer.

COUNT scrboard <=20 k

To express our result as a proportion, we DIVIDE by 1000. To see
our results, we add a PRINT command and a HISTOGRAM
command.

DIVIDE k 1000 prob

PRINT prob

HISTOGRAM scrboard

Result:

prob = .038

The results show that in 38 series out of 1000, our simulated Larry
Bird gets 20 or fewer baskets in a series of 57 shots. That means
that even if nothing changes in his shooting, about 3 or 4 out of
every 100 series of 57 shots, on average, he would shoot that
poorly or worse. To verify and refine our estimate, we might run
the program again several times, or increase the number of trials.
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A confidence interval for a political survey
(program “bush”)

One of the Gallup polls for the 1988 U. S. presidential election
showed 840 (56%) for Bush and 660 for Dukakis (a total of 1500
voters). Estimate bounds on the percentage of the entire electorate
that favors Bush.

Put another way, we would like to learn how variable our sample
result is. How much might one sample differ from another?

If we had unlimited time and money, we could take additional
surveys of 1500 each to see how much they differ from one an-
other. Lacking the ability to go back to the actual universe and
draw more samples from it, we do the next best thing — we create
a hypothetical “bootstrap” universe based on the sample data, and
then draw samples from it.

We therefore use 56% as our best estimate of the percentage of the
electorate that favors Bush, then observe how samples of size 1500
from such a hypothesized electorate behave. We want to see how
variable one sample proportion is from another. Here we use the
MAXSIZE command to create vector space for more than 1000
elements.

MAXSIZE a 1500

REPEAT 1000 Do 1000 simulations

GENERATE 1500 1,100 a Generate a sample where
1-56 = “favor Bush”

COUNT a <= 56 b Count the Bush votes

DIVIDE b 1500 c Convert to a proportion

SCORE c scrboard Keep score

END End the simulation, go back
and repeat until 1000 are
complete

HISTOGRAM scrboard

PERCENTILE scrboard (2.5 97.5) interval
Find the 2.5th and 97.5th
percentiles

PRINT interval

Result:

interval = 0.539 to 0.584

interval is the estimated confidence interval.
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Figure 2: Proportion of favorables in samples of 1500, drawing from a
universe that is 56% favorable

NOTE

The shaded area above indicates one iteration of the experiment.
An alternative approach is to write this as your “core procedure”
(under “Wizards”), then use the “Repeat Wizard” to repeat it, and
the “Results Wizard” to show you the percentiles.

Figure 2 reveals the distribution of these resampling proportions.
To estimate a 95% confidence interval, we determine those values
that enclose 95% of our results, “chopping off” 2.5% at either end.
This agrees quite well with the interval obtained by a conventional
Normal approximation: P ± 1.96 (P(1-P)/n)½ = .535 to .585.
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Pig weight gains — reliability of the estimate
(program “pigfood”)

(This bootstrap example is from Basic Research Methods in Social
Science, Julian L. Simon, 1969.)

An agricultural lab decides to experiment with a new pig ration —
ration A — on twelve pigs. After 4 weeks, the pigs experience an
average gain of 508 ounces. The weight gains of the individual
pigs are as follows: 496, 544, 464, 416, 512, 560, 608, 544, 480, 466,
512, 496.

In presenting these results to major agricultural feed distributors,
the lab wants to report not just the average estimated weight gain
(as represented by the sample average), but also the possible range
of sampling error.

How can we determine the extent to which one sample differs
from another? (The reliability of our estimated mean weight gain.)
If we had more time and money, we could try the ration on addi-
tional groups of 12 pigs, and see how the mean weight gain
differed from group to group.

Lacking time and money, we will create a hypothetical “bootstrap”
universe that we can draw re-samples from.

If the real universe is made up of pig weight gains like those we
observed in our sample), we can represent this universe with, say,
1 million (or a billion, or a trillion) weight gains of 496 ounces, 1
million of 544 ounces, and so on for the observed weight gains. We
could then draw repeated re-samples of 12 from this universe.
Each time we draw a weight gain, each of the original weight gains
has the same probability of being selected. As we draw these re-
samples, we want to observe and record the means of each re-
sample. At the conclusion of all the trials we identify those values
that enclose, say, 95% of all the trial re-sample means. These values
are the endpoints of a 95% estimated confidence interval around
the sample mean.

Recognizing that it would be tedious to create a simulated uni-
verse with millions of values, we can achieve the same effect by
selecting our new samples of 12 directly from the original sample
randomly and with replacement. In that way, we have effectively
created an infinite universe, “bootstrapped” from our sample. In
RESAMPLING STATS:

First, we must record the initial data.

DATA (496 544 464 416 512 560 608 544 480 466 512 496) a

Record the data
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Could use the COPY command
also — it is the same as DATA

REPEAT 1000 Do 1000 trials

SAMPLE 12 a b From “a,” take a sample of 12 with
replacement and put it in “b”

MEAN b c Calculate the mean of the resample,
put the result in “c”

SCORE c scrboard Score the result

END End one trial, go back and repeat —
Keep repeating until all 1000 are
complete

HISTOGRAM scrboard Produce a histogram of trial results
(Figure 3)

To help us pin down the confidence interval more precisely, we use
the command PERCENTILE:

PERCENTILE scrboard (2.5 97.5) interval
Calculate the 2.5th and 97.5th
percentiles of trial results

PRINT interval

NOTE

The shaded area above indicates one iteration of our simulation
experiment. An alternative approach is to enter those commands
in the Wizards “core procedure” window, then use the “Repeat
Wizard” to repeat the procedure and the “Results Wizard” to get
the percentiles.  (This would cause the data entry step to be
needlessly repeated, but the only effect of that will be to slow
down the computer a bit.)

Results:
interval = 480 to  537 = estimated 95% confidence interval

Figure 3: Average weight gain of 12 pigs, drawing bootstrap samples of
size 12 from the given data, 1000 simulations
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This agrees reasonably well, but is a bit narrower than the conven-
tional t approximation of 476 to 540. In fact, Monte Carlo simula-
tions show that in this case the bootstrap interval is slightly
narrower than the “true” interval, a bias that diminishes with
larger samples and less extreme confidence intervals. See Efron
(1993) for a discussion of refinements of the bootstrap that produce
greater accuracy.

How does this “bootstrap” approach relate to the conventional
formulaic approach?  In reality they are parallel methods, both
seeking to answer the question “how would other samples behave
when drawn from the same universe that spawned our original
sample?” A “bootstrap” approach says “let’s constitute a hypo-
thetical universe  — the sample itself —  that represents our best
guess about the real universe, then draw lots of samples from it.”
A conventional approach says “Let’s describe a hypothetical
distribution — say the Normal — that might have spawned our
sample.  We’ll use the parameters mean and standard deviation for
this description.  Then we’ll use someone else’s description of how
samples drawn from such a hypothetical  universe behave, em-
ploying formulas and tables.”

This same bootstrap sampling distribution could be used in
answering a different question. Suppose we are now concerned
with the merchant who will distribute the new feed. This firm
wants to advertise an average weight gain level to minimize the
probability that the real average is less than his advertised average.
Specifically, it wants to select a value for advertising such that 95%
of the samples had a higher average.

Again, we use the command PERCENTILE:

PERCENTILE scrboard 5 c5 Calculate the 5th percentile of
trial results

PRINT c5

Results:
c5 = 487

95% of the values lie above this point — it constitutes the lower
bound of a one-tailed 95% confidence interval that includes the
population mean.
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Generalization — the bootstrap

The bootstrap procedure can be generalized to many other situa-
tions where you have taken a sample, calculated a statistic for the
sample, and want to know how reliable that statistic is as a mea-
sure for the population from which the sample came. If it were
possible, we would take an additional sample (or samples) from
the population and see how the statistic varied. We don’t have the
population available — but we do have our sample, which is the
best proxy to the population. We can expand, or bootstrap, our
sample into the hypothetical population in which we are interested
by replicating each member of the sample, say, a million times.
Then we can proceed to take a new sample from this hypothetical
population and see how the statistic changes.

A shortcut is to take the new sample from the sample itself, with
replacement. Here’s why: each time we select an observation for the
new sample, we want each of the elements of our original sample
to have an equal chance of being selected — hence our decision to
sample with replacement. This is just about the same thing as
replicating each member of the sample, say, a million times and
sampling without replacement.

Of course, we can (and should) take more than one new sample —
1,000 or 10,000 can be done easily on the computer.

NOTE: HOW PERCENTILES ARE CALCULATED

The PERCENTILE command first sorts the vector values, then
calculates that value corresponding to a specified percentile X. If
there is a single value Y such that the percentage of the distribution
below Y is less than X and the percentage of the distribution above
Y is less than (1-X), that value Y is the percentile sought. If the
specified percentile does not correspond exactly to a single posi-
tion in the distribution of values, an average of the values bracket-
ing the percentile position will be used. This procedure is analo-
gous to the method for calculating the median.

Using the PERCENTILE command, we can also see more than one
confidence interval at the same time:

PERCENTILE scrboard (.5 2.5 97.5 99.5) intervals

Gives you the percentiles corresponding to
the above numbers — the resulting vector
“intervals” contains the endpoints for 99%
and 95% confidence intervals
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A confidence interval for a median
(program “profits”)

Sometimes, especially with highly skewed data such as incomes,
the median is preferred to the mean as a measure of the distribu-
tion center. Constructing a confidence interval for the median is
easy with RESAMPLING STATS.

Say you need to come up with a quick estimate of the profits of a
typical American Fortune 1000 business, and the extent to which
that estimate might be in error. You draw a random sample of 15
firms, finding their profits (in $ million) to be: 1315, 288, 155, 37,
99, 40, 170, 66, 500, 419, 125, -90, -63, 29, 966. We use
RESAMPLING STATS to calculate the median profit, and construct
a bootstrap confidence interval:

DATA (1315 288 155 . . .) a Record the profits of the 15 firms.
Could use the COPY command
also — it is the same as DATA

MEDIAN a meda Find the median, call it “meda”

REPEAT 1000 Do 1000 trials

SAMPLE 15 a aa Take a sample of 15 with replacement

MEDIAN aa med$ Find the median of the resample,
call it “med$”

SCORE med$ scrboard Keep score of the trial result

END End one trial, go back and repeat

PERCENTILE scrboard (5 95) interval
Calculate the 5th and 95th percentiles

PRINT meda interval Print the actual sample median, plus
the 5th and 95th percentiles of the
resample medians

Results:
meda    = 125

interval      =  40  288

The sample we chose has a median of $125 million, and our 90%
confidence interval runs from $40m to $288m.

NOTE

The shaded area above indicates one iteration of our simulation
experiment. An alternative approach is to enter those commands
in the “core procedure” window under “Wizards,” then use the
“Repeat Wizard” to repeat it, and the “Results Wizard” to get the
percentiles.
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A confidence interval for net profit
(program “mailing”)

To test potential response to a new book offer, a mail order com-
pany sends a mailing to 10,000 potential customers, randomly
selected from lists of millions.  If the offering is successful, it will
be mailed to the much larger lists of recipients.

The results of the test are categorized into “no” (negative re-
sponse), “silent” (no response), “order/return,” “order/bad debt,”
and “order/pay.”  The value of a customer who orders the title is
$45 (this includes the immediate profit from the book, plus the net
present value of possible future orders).  The customers who order
and return, and those who order and never pay, are worth $8.50
and $9.50 respectively, reflecting the processing costs of the
customer transactions and correspondence, and the value of
material shipped.  The silent customer costs the firm just the
outgoing mailing costs — $.40.  The customer who responds “no”
costs costs the firm the outgoing mailing costs, plus the cost of the
postpaid reply.

Action number proportion profit rate profit

No 500 0.05 -$0.95 -$475
Silent 9200 0.47 -$0.40 -$3,680
Order/return 90 0.009 -$8.50 -$765
Order/bad debt 30 0.003 -$9.50 -$285
Order/pay 180 0.018 $45.00 $8,100

Profit $2,895

The profit from the test mailing is $2,895.  How reliable an estimate
is this?  How different might it be with a different sample from the
same population?

We answer this question by constituting a hypothetical population
of outcomes, and drawing samples of 10,000 from it so we can see
how those samples behave.  Our best guess about what the popu-
lation of outcomes looks like is the sample itself, so we could
replicate the sample many times and constitute a hypothetical
larger universe.  Alternatively, we can sample with replacement
from the sample itself (effectively the same thing as replicating the
sample an infinite number of times and sampling without replace-
ment).

Here are the specifics:

1. Constitute an urn with slips of paper recording the various
outcomes (profits), in the quantities in which they occurred in the
sample:  500 -.95’s, 9200 -.4’s, 90 -$8.5’s, 30 -9.5’s, and 180 45’s.
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2. Draw a sample of 10,000 randomly and with replacement.

3. Sum the profit values in the resample & record.

4. Repeat many times.

Here’s the program:

MAXSIZE orders 10000 orders$ 10000

URN 500#-.95 9200#-.4 90#-8.5 30#-9.5 180#45 orders

REPEAT 1000

SAMPLE 10000 orders orders$

SUM orders$ profit$

SCORE profit$ scrboard

END

HISTOGRAM scrboard

PERCENTILE scrboard (5 95) int

PRINT int

Results:

INT      =     1920     3896

The 90% bootstrap confidence interval for the profit runs from
$1,920 to $3,896.
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Confidence Interval for a Measure of Agreement
(program “kappa”)

Radiographer A examines 160 slides, reports 18 positives and 142
negatives.  Radiographer B examines the same slides and comes
up with 8 positives and 152 negatives.  Here’s how the readings
split up:

Radiographer A
+ -

Radiographer B + 7 1 8

- 11 141 152

18 142 160

The Kappa statistic is used to measure the extent of agreement,
where

# agreements observed - # agreements expected

# slides reviewed total - # agreements expected

The term “expected” here means what would occur if the two
radiographers did not agree with each other more than what
chance would produce.  For example, A had 142 negatives.  Of
these 142 negatives, just by chance, we would expect B to rate 95%
(152/160) as negative, or 134.9.  More formally,

The expected count for each cell in the 2x2 table is the product of
the marginals for that cell, divided by the total.  For the negative-
negative cell:

(152*142)/160 = 134.9

Expected counts:
.9 7.1

17.1 134.9

Agreements are denoted by the upper left and lower right cells, so
expected agreement is 135.8.  Kappa is calculated as follows:

Kappa = (148-135.8)/(160-135.8) = .5

Kappa can range between -1 and 1; it tells us what proportion we
have attained of possible total agreement in excess of chance.

The observed value in this case is .5.  How reliable is this estimate?
Let’s derive a bootstrap confidence interval for it.

Solution:  We want to know how additional samples of 160 slides
would fare, being examined by the same radiographers.  Would
the Kappa statistic vary greatly from one sample of 160 to another?
We don’t have additional sets of slides to look at, so we take
additional samples from the universe suggested by our sample.
We note that we had four types of slides:  7 pos-pos, 1 Aneg-Bpos,

Kappa =
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11 Apos-Bneg, and 141 neg-neg.  We could imagine marking 7
cards “pp”, 1 card “np”, 11 cards “pn”, and 141 cards “nn”, and
shuffling them in a hat.  We would draw a sample with replace-
ment, count the numbers of various types of cards, recalculate the
Kappa statistic, and record it.  Do this many times, and observe the
distribution of the resampled Kappa statistic.

MAXSIZE scrboard 10000

URN 7#1 1#2 11#3 141#4 a Record the observed cases,
Letting #1 represent “pp”, #2
represent “np”, #3 “pn” and #4 “nn”.

REPEAT 10000

SAMPLE 160 a b Take a sample of 160 cases, with
replacement

COUNT b =1 a11 Count the “pp” cases

COUNT b =2 a12 Count the “np” cases

COUNT b =3 a21 Count the “pn” cases

COUNT b =4 a22 Count the “nn” cases

LET xagrees =
((a11+a21)*(a11+a12)160)+((a12+a22)*(a21+a22)/160)

calculate the expected agreements
(keep it all on one line, though)

LET kappa = ((a11+a22)-xagrees)/(160-xagrees)
calculate kappa

SCORE kappa scrboard

END

HISTOGRAM scrboard

PERCENTILE scrboard (5 95) int

PRINT int

Results:

int  =  0.27711    0.68932
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Hypothesis test for a difference in proportions
(program “noshow”)

Fly-By-Night Airways wishes to determine whether its business
routes have a different passenger no-show rate than its vacation
routes. It divides its routes into business and vacation, setting
aside those routes that are neither. Taking a sample of 1000 reser-
vations for each group, it determines that 384 passengers failed to
show up on the business routes, while 341 failed to show up on the
vacation routes. How likely is it that such a difference (43 or
greater) occurred by chance, if the routes do not differ in this
respect?

If the two routes do not differ, then our best estimate of the overall
no-show rate (our null hypothesis) is (384+341)/2000 = 36.3%. We
now want to test whether 2 groups of 1000 drawn from this no-
show rate are likely to show differences as great as those observed.

REPEAT 1000 Do the experiment 1000 times

GENERATE 1000 1,1000 business
Generate 1000 bookings to represent
the business routes

GENERATE 1000 1,1000 vacation
Same for vacation routes

COUNT business between 1 363 bnoshow
Count the business no-shows (recall
that the null hypothesis overall
no-show rate is 36.3%)

COUNT vacation between 1 363 vnoshow
Similarly for the vacation no-shows

SUBTRACT bnoshow vnoshow dif
Find the number of excess business
no-shows

SCORE dif scrboard Keep score

END Go back and repeat until 1000 trials
are complete, then proceed

NOTE

The shaded commands above indicate one iteration of our simula-
tion experiment. An alternative approach is to enter these com-
mands in the “core procedure” window under “Wizards,” use the
“Repeat Wizard” to repeat the procedure, and the “Results Wiz-
ard” to find out how often the simulation result was as extreme as
(or more extreme than) the observed result.
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Figure 5: Difference in number of no-shows between two samples,
drawing two samples of size 1000 where the no-show probability is
36.3% for each draw, 1000 simulations

From the histogram (Figure 5) and the result, we see that obtaining
43 or more “excess” business no-shows by chance is highly un-
likely — it happened only 28 out of 1000 tries, for an estimated
“p-value” of .028.

HISTOGRAM scrboard Produce a histogram of the trial
results (Figure 5)

How often was the difference >= the observed difference? These
commands will calculate this for us:

COUNT scrboard >=43 k

DIVIDE k 1000 prob

PRINT prob

Result:

prob = .028

NOTE

The shaded commands above indicate one iteration of our simula-
tion experiment. An alternative approach is to enter these com-
mands in the “core procedure” window under “Wizards,” use the
“Repeat Wizard” to repeat the procedure, and the “Results Wiz-
ard” to find out how often the simulation result was as extreme as
(or more extreme than) the observed result.
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Does one brand of car battery last longer than another? Here are
the figures on 10 randomly selected batteries each for brand A and
brand B. Is brand A’s apparent advantage significant?

TABLE 2. BATTERY LIFE TIMES

brand life (months) aveage

A 30 32 31 28 31 29 29 24 30 31 29.5
B 28 28 32 31 24 23 31 27 27 31 28.2

A’s advantage: 1.3 months

Our null hypothesis is that there is no difference between the two
types of batteries. If this is the case, then we can consider them
part of the same “population,” writing their durations down on
slips of paper and tossing the slips all in the same hat. Next we
draw out 10 slips of paper to represent pseudo brand A, followed
by 10 slips of paper to represent pseudo brand B. For purposes of
this example, we will draw with replacement, since we want to
make inferences to a larger population, process or system that
produced these batteries. We calculate the average life time of each
group, and determine whether they differ by as much as the
observed data.

In making our draws, we have a choice—we could sample with
replacement (a bootstrap procedure) or without replacement (a
permutation or randomization test). A discussion of sampling with
or without replacement can be found at www.resample.com\
permutation.htm. For purposes of this example we will try it both
ways to see how much of a difference it makes. Since we’re com-
paring two methods, let’s set the number of trials at 15,000 (requir-
ing the use of MAXSIZE at the outset of the program to increase
the capacity of the scorekeeping vector “scrboard” from the default
value of 1000 to 15,000).

In RESAMPLING STATS:

MAXSIZE scrboard 15000

COPY (30 32 31 28 31 29 29 24 30 31) a

Record the data

COPY (28 28 32 31 24 23 31 27 27 31) b

CONCAT a b c Combine the data

REPEAT 15000 Do 15000 trials

Hypothesis test for a difference in means
(program “battery”)
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SAMPLE 10 c d Take a sample, size 10, with replacement,
and call it “d”

SAMPLE 10 c e Take our second sample

MEAN d dd Find the means of the two samples

MEAN e ee

SUBTRACT dd ee f Find the difference between the two
sample means

SCORE f scrboard Keep the score of the difference

END End one trial, go back and repeat until
1000 are complete, then proceed

HISTOGRAM scrboard Produce a histogram of the trial results

COUNT scrboard >=1.3 k

DIVIDE k 15000 prob

PRINT prob

How often did “D” group exceed “E” group by 1.3 or more?

Result:
prob = .147

NOTE

The shaded commands above indicate one iteration of our simula-
tion experiment. An alternative approach is to enter these com-
mands in the “core procedure” window under “Wizards,” use the
“Repeat Wizard” to repeat the procedure, and the “Results Wiz-
ard” to find out how often the simulation result was as extreme as
(or more extreme than) the observed result.
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Figure 6: Difference in mean battery lifetime between two samples of
size 10, each drawn from the given data, 15000 simulations

Battery without replacement

Here is the same problem, the only change being that we use
sampling without replacement instead of sampling with replace-
ment.

The TAKE command selects specified elements from a vector.  The
SHUFFLE/TAKE combination is our way of sampling without
replacement:

MAXSIZE scrboard 15000

COPY (30 32 31 28 31 29 29 24 30 31) A

COPY (28 28 32 31 24 23 31 27 27 31) B

CONCAT A B C

REPEAT 15000

From the histogram (Figure 6) and the result, we see that a differ-
ence of 1.3 months would not be at all unusual if we draw random
samples of 10 from our combined population.  The cases where
randomly-drawn group D’s mean exceeds randomly-drawn group
E’s mean are not unusual — this occurs 14% of the time for an
estimated “p-value” of .147.
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SHUFFLE c d

TAKE d 1,10 e

TAKE d 11,20 f

MEAN e ee

MEAN f ff

SUBTRACT ee ff g

SCORE g scrboard

END

HISTOGRAM scrboard

COUNT scrboard >= 1.3 k

DIVIDE k 15000 prob

PRINT prob

Result:

prob =  .168

NOTE

The shaded commands above indicate one iteration of our simula-
tion experiment. An alternative approach is to enter these com-
mands in the “core procedure” window under “Wizards,” use the
“Repeat Wizard” to repeat the procedure, and the “Results Wiz-
ard” to find out how often the simulation result was as extreme as
(or more extreme than) the observed result.

Figure 7:  Difference in mean battery lifetime between two samples of
size 10, each drawn from the given data, 15,000 simulations



44 Resampling Stats User’s Guide

While sampling without replacement yields the same conclusion –
not statistically significant – as sampling with replacement, in this
case there is a slight difference in p-values.

Historically, the two represent different strands of thinking in
statistics.

Sampling with replacement is a bootstrap procedure, first pub-
lished by Julian Simon in 1969 (Simon, 1969) and named and
developed in the literature by Bradley Efron in the late 1970’s and
early 1980’s (Efron, 1979 and 1982).

Sampling without replacement is the same thing as a Monte Carlo
or approximate version of a permutation test (also called a ran-
domization test).

Suggested by R.A. Fisher (Fisher, 1935) and elaborated by E. J. G.
Pitman (Pitman, 1937), permutation tests involve exhaustively
enumerating all the ways the combined battery data could be split
into two sub-samples of size 10 each, to use the current example as
an illustration.

Meyer Dwass (Dwass, 1957) later suggested that random samples
selected Monte Carlo style from all these permutations could
substitute for an exhaustive enumeration of them.  This is the
“sampling without replacement” procedure used above.

Permutation tests and their Monte Carlo or “approximate” coun-
terparts are “exact” tests – they can be counted on to produce
Type-I error rates at or below the nominal level of the test.  For
example, if the level of the test is .05, an exact test produces
(erroneous) “significant” results 5% of the time or less when
testing a null model.

Owing to the long history of permutation procedures and their
exact nature, many practitioners of resampling generally prefer
sampling without replacement (a permutation test) rather than
with replacement (a bootstrap procedure) whenever such a proce-
dure makes sense in the context of the data and problem.



45Resampling Stats Illustrations

Baseball payroll—hypothesis test for correlation using the Pearson
correlation coefficient
(program “baseball”)

Is a baseball team’s performance directly related to its payroll? (In
technical terms, is there a correlation between two variables, or are
they independent?) Specifically, we want to know whether base-
ball teams with high payrolls also tend to be the better performing
teams.

The following data are from the Washington Post, March 27, 1998,
page F2, and were compiled by the Post according to the formula
of the Player Relations Council. Performance is ranked by the
teams’ won-loss records; note that good performance is denoted by
a low rank number.

TABLE 3. MAJOR LEAGUE PAYROLL AND WON-LOSS RANKS
1995–1997

Total Payroll Rank*

NY Yankees 192.7 3
Baltimore 179.5 4
Atlanta 164.8 1
Cleveland 155.7 2
Chicago WS 150.3 14
Cincinnati 143 9.5
Texas 139.9 11
Colorado 138.3 8
Toronto 137.4 25
St. Louis 137.3 19.5
Seattle 137.1 6
Boston 131.8 7
Los Angeles 128.3 5
San Francisco 124 18
Chicago Cubs 123 21
Florida 122.8 12
Anaheim 116 15.5
Houston 115.4 9.5
Philadelphia 109.9 26
San Diego 104.5 13
NY Mets 104.2 17
Kansas City 101.1 22
Minnesota 94.6 27
Oakland 85.5 23.5
Detroit 84 28
Milwaukee 78.5 19.5
Pittsburgh 67.7 23.5
Montreal 67.6 15.5

*Rank in games won and lost over the 3-year period.
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Figure 8: Scatterplot, baseball payroll vs. performance

We can guess that if there is a relationship here, it might well be a
linear one. Statisticians typically measure the strength of a linear
relation ship with the Pearson correlation coefficient, which can
range between -1 (strong negative correlation) through 0 (no
correlation) to +1 (strong positive correlation). The Pearson corre-
lation coefficient for these data is -.71. Is that statistically signifi-
cant? Might a correlation coefficient this negative have occurred
just by chance? In other words, might there be no relationship
between the two variables and the apparent correlation be the
result of the “luck of the draw?”

Here is a resampling procedure to test this possibility:

1. Write down all the payroll numbers on one set of cards, one
number per card. Do likewise with the performance ranks.

2. Shuffle the “pay” cards (or both sets of cards—either procedure
will achieve full randomization of one variable relative to the
other), and deal out the “rank” cards along side the “pay” cards.

3. Calculate the correlation coefficient of the shuffled arrays, and
record.

4. Repeat steps 2-3 many times, say 1000 times.

5. Find out how often the shuffled correlation coefficient is as low
as or lower than the observed value of -.71.

The data presented in the above table are in a data file called
“baseball.dat,” which is an ASCII (text) file with two columns of
numbers. The first column is the payroll numbers, and the second

Payroll. $million

W
o
n
-lo

st
 r

e
co

rd

Baseball Pay vs. Performance (1996-97)
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Result:
prob = 0

No shuffling produced a correlation coefficient as negative as the
observed value, -.71, so we conclude that there is significant
correlation between payroll and performance. The higher the
payroll, the lower the rank number (i.e. the better the perfor-
mance).

READ file “baseball.dat” pay rank

CORR pay rank r Calculate the observed correlation
coefficient

REPEAT 1000

SHUFFLE rank rank$ Shuffle the ranks, call the result rank$
(the “$” is often used to denote the
resampling counterpart to an
observed variable)

CORR pay rank$ r$ Find the correlation between the
shuffled ranks and pay; call this
resampled correlation coefficient r$

SCORE r$ scrboard Keep score of this resampled
correlation coefficient in scrboard

END

HISTOGRAM scrboard

COUNT scrboard <=r k How often did the resampled
(shuffled) correlation coefficient fall at
or below the value of the observed
correlation coefficient?

DIVIDE k 1000 prob Convert to a proportion for an
estimated p-value

PRINT r prob

Figure 9: Correlation after shuffling
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Consider the array:
1

2

3

Let’s multiply it by another array which is arranged in the same
order (lowest to highest):

1 x 2 =  2

2 x 4 =  8

3 x 6 = 18

sum = 28

Now rearrange the second array and perform the multiplication
again. You will note that the sum of products is at its highest when
the two arrays are in the same order. Conversely, you will note that
the sum of products is at its lowest when the two arrays are in
perfect opposite order.

To repeat: When there is perfect positive correlation (high numbers
go with high, low numbers with low), the sum of products is at its
highest. When there is perfect negative correlation (high with low,
low with high), this sum of products is at its lowest.

Most often, though, when we randomly shuffle the second array,
the sum of products will be neither at its highest nor at its lowest
— it will be somewhere in the middle.

To test for positive correlation, we see how often random shuffling
produces a sum of products as high as (or higher than) the ob-
served sum of products. If it hardly ever does, then we can say that
there is significant positive correlation.

To test for negative correlation, we see how often random shuffling
produces a sum of products as low as (or lower than) the observed
sum of products. If it hardly ever does, then we can say that there
is significant negative correlation.

Baseball payroll—testing for correlation using the sum-of-products
statistic
(program “basebal2”)

We can also conduct this test with a statistic other than the correla-
tion coefficient, the calculation of which is not wholly transparent.
We will use the “sum of products” statistic. (Interestingly, the
multiplications used in the sum-of-products test also appear in the
calculation of the Pearson correlation coefficient, which then goes
on to scale them to between -1 and +1.)
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TABLE 4. BASEBALL PAYROLL AND RANK DATA WITH PRODUCTS
1995–1997

Total Payroll Rank Product

NY Yankees 192.7 3 578.1
Baltimore 179.5 4 718
Atlanta 164.8 1 164.8
Cleveland 155.7 2 311.4
Chicago WS 150.3 14 2104.2
Cincinnati 143 9.5 1358.5
Texas 139.9 11 1538.9
Colorado 138.3 8 1106.4
Toronto 137.4 25 3435
St. Louis 137.3 19.5 2677.35
Seattle 137.1 6 822.6
Boston 131.8 7 922.6
Los Angeles 128.3 5 641.5
San Francisco 124 18 2232
Chicago Cubs 123 21 2583
Florida 122.8 12 1473.6
Anaheim 116 15.5 1798
Houston 115.4 9.5 1096.3
Philadelphia 109.9 26 2857.4
San Diego 104.5 13 1358.5
NY Mets 104.2 17 1771.4
Kansas City 101.1 22 2224.2
Minnesota 94.6 27 2554.2
Oakland 85.5 23.5 2009.25
Detroit 84 28 2352
Milwaukee 78.5 19.5 1530.75
Pittsburgh 67.7 23.5 1590.95
Montreal 67.6 15.5 1047.8

Sum of products: 44858.7

Is the observed sum of products, 44,858.7, lower than what might
be obtained by random shuffling of the data as we did before? The
same resampling procedure is used, except that we calculate the
sum-of-products in step 3 instead of the correlation coefficient.

1. Write down all the payroll numbers on one set of cards, one
number per card. Do likewise with the performance ranks.

2. Shuffle the “pay” cards (or both sets of cards—either procedure
will achieve full randomization of one variable relative to the
other), and deal out the “rank” cards along side the “pay” cards.

3. Calculate the sum-of-products of the shuffled arrays, and
record.

4. Repeat steps 2-3 many times, say 1000 times.
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5. Find out how often the shuffled correlation coefficient is as
negative as or lower than the observed value of -.71.

Here is a RESAMPLING STATS program:

READ file “baseball.dat” pay rank
Read the data into two vectors, pay
and rank

REPEAT 1000

SHUFFLE rank rank$ Shuffle the ranks, call the result rank$
(the “$” is often used to denote the
resampling counterpart to an
observed variable)

MULTIPLY pay rank$ products
Multiply the pay vector by the
shuffled rank vector (resulting in 28
products, placed in a vector of that
name)

SUM products sumprod Sum those products

SCORE sumprod scrboard Keep score of the sum

END

COUNT scrboard <= 44858.7 k How often was the sum as low as or
lower than the observed sum?

DIVIDE k 1000 prob

PRINT prob

Result:

prob = .0001

Only one shuffling out of 1000 produced a sum of products as low
as the observed value, so we conclude that there is significant
correlation between payroll and performance. The higher the
payroll, the lower the rank number (i.e. the better the perfor-
mance).
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A useful application of the resampling method is in determining
appropriate sample size.

EXAMPLE 1 (WITH A PROPORTION)

Consider the problem of a political candidate interested in taking a
poll to learn her standing in the race.  Suppose now that she has
not yet taken the poll, and wants to determine how much to spend
on it (i.e., how many people to query).

We will begin here with a trial-and-error approach, considering
how much error there might be in a poll of 100 people.  But what
universe should we draw from?  Continuing our trial-and-error
approach, our candidate guesses that she is in a fairly tight race so
we draw from a 50/50 universe to observe how samples from that
universe behave. (Later we could modify that to draw samples
from a different universe.) Here’s the program:

REPEAT 1000 Do 1000 trials

GENERATE 100 1,2 a Generate 100 numbers (the sample of
voters) randomly selecting “1” or “2.”
We let 1 = favorable, 2 = unfavorable

COUNT a =1 b Count the number of favorables in the
sample

SCORE b scrboard Keep score

END End the trial, go back and repeat until
1000 are complete

Next, we want to measure how variable these results are. The
following commands calculate the 5th and 95th percentile of the
trial results:

PERCENTILE scrboard (5 95) interval

PRINT interval

We could then run the program again with a sample size of 500
instead of 100.

REPEAT 1000 Do 1000 trials

GENERATE 500 1,2 a Generate 500 numbers (the sample of
voters) randomly selecting “1” or “2.”
We let 1 = favorable, 2 = unfavorable

COUNT a =1 b Count the number of favorables in the
sample

SCORE b scrboard Keep score

END End the trial, go back and repeat until
1000 are complete

Sample size
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PERCENTILE scrboard (5 95) interval

PRINT interval

Running the program 3 or 4 times may suffice for a quick estimate
of the appropriate sample size. For more exhaustive estimating,
the following “nested loop” procedure is suggested:

COPY 100 s Set the sample size indicator at 100

REPEAT 20 Experiment with 20 different sample
sizes

ADD 20 s s Add 20 to the sample size (our first
experiment will actually be with a
sample size of 120)

REPEAT 1000

GENERATE s 1,2 a Use “s” as the sample size in each set
of 1000 trials

HINT:  Note that GENERATE can
accept a variable as its sample size.
SAMPLE is the same way.

COUNT a =1 b

SCORE b scrboard

END

PERCENTILE scrboard (5 95) interval
We calculate the percentiles for each
of the 20 sample sizes

DIVIDE interval s prop Convert to a proportion so we can
easily compare different sample sizes

PRINT s Print the sample size

PRINT prop Print the interval

CLEAR scrboard Clear the scorekeeping vector used in
the “inner” loop

END

HINT

Take care to CLEAR the scorekeeping vector used in a nested loop
before beginning another iteration of the nested loop.

It is then easy to look at the intervals and sample sizes to make a
judgement about whether the cost of additional sampling is worth
the improved accuracy.
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EXAMPLE 2 (WITH MEASURED DATA)

Consider again the feed merchant who is marketing a new pig
ration. Seeing that the resamples of 12 produce considerable
variability from sample to sample, he wants to know whether a
larger sample would produce less variability. This would allow
him to establish a higher bound for the minimum performance of
his new product. We expect that it would, so the important ques-
tion becomes how much an increase in sample size reduces vari-
ability. Let us try the same procedure again, only taking resamples
of size 40 instead of size 12 from the original set of 12 observations:

DATA (496 544 464 416 512 560 608 544 480 466 512 496) a

Could also use the COPY command —
it’s the same as DATA

REPEAT 1000

SAMPLE 40 a b

MEAN b bb

SCORE bb scrboard

END

HISTOGRAM scrboard

In running this experiment, we found that 499 ounces was the
cutoff point for a 90% one-sided confidence interval: 900 of our
1000 trials produced sample means at or above this level. This is an
improvement over our result (491 ounces) with a re-sample size of
12. The merchant must weigh the costs of further sampling against
the benefits of being able to narrow his confidence interval.
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Unusual Statistics
(program “firings”)

One of the advantages of resampling is its suitability for use with
non-standard statistics.  Here is an illustration of a statistic de-
signed to meet the needs of a specific situation:

A company has been accused of firing workers (it has 50) when
they get close to the level of seniority at which their pension would
be vested (25 years).  The union notes that the levels of seniority of
7 fired workers in the last 12 months were unusually close to 25
years.

Seniority at discharge (years):

23 19 24 23 25 2 5

Seniority of all workers:

11 8 24 36 20 19 11 9 10 9 5
4 2 1 9 21 16 17 11 1 1 23
19 24 40 28 5 7 1 34 20 16 31
23 50 4 1 8 8 14 12 32 1 15
12 25 19 5 24 2

Note:  A “25” indicates the worker’s pension has vested.

The company counters that operational considerations were the
only factors in each of the firings and that the proximity of the
firing dates to pension vesting dates was purely coincidental, the
result of random chance.

Can we assess whether this claim is reasonable?

To solve this problem, we need a measure of the degree to which
firing dates cluster just below 25 years seniority.  Here’s one
possible measure:

Let’s subtract from 25 the tenure of each fired, unvested employee
then sum them.  The lower that sum, the more the firings cluster
just below 25.  What about the workers already vested?  They are
all equal evidence against the union’s claim, and probably equiva-
lent in meaning to a very junior worker being fired – whatever the
reason for firing a very junior or a vested worker, we can be pretty
confident that it is unrelated to pension vesting.  So, we add to our
sum 25 for each worker whose pension is vested.  If the overall
sum is low, that indicates the firings cluster just below 25.

To sum up, we subtract each worker’s tenure from 25, convert all
results <=0 to 25, then sum.

For the observed data, this sum is 79.
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Resampling Procedure:

1.  Put the tenures of the 50 workers in a hat.

2.  Select 7 at random, without replacement.

3.  Subtract each worker’s tenure from 25, convert all results <=0 to
25, then sum.  Record this sum.

4.  Repeat steps 2-4 many times.

5.  How often did we get a result <= the observed value of 79?

DATA (11 8 24 36 20 19 11 9 10 9 5 4 21 9 21 16 17 11 1 1 23 19
24 40 28 5 7 1 34 20 16 31 23 50 4 1 8 8 14 12 32 1 15 12 25 19 5
24 2) a

REPEAT 1000

SHUFFLE a aa Shuffle the data

TAKE aa 1,7 b Take the first 7 (note that aa remains
unchanged)

SUBTRACT 25 b c Subtract each of the 7 tenures from 25

RECODE c <=0 25 d Recode all non-positive results as 25

SUM d e Find the sum

SCORE e scrboard Keep score

END

COUNT scrboard <= 79 k How often did the resampled result
fall at or below the observed result of
79?

DIVIDE k 1000 prob

PRINT prob

Result:

prob = .11

The estimated p-value is .11, indicating that a sum as low as the
observed value of 79 might happen 11% of the time, simply
drawing workers at random.  We conclude the evidence is not
strong that there was systematic firing of those close to vesting.
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The command REGRESS performs multiple linear regression.
RESAMPLING STATS allows you to repeat the regression many
times with randomized or bootstrapped values to assess the
significance of your results.

Bootstrapping a regression – cases
(program “news”)

We can also use resampling to establish confidence intervals for
the coefficients and intercept of a regression equation. For ex-
ample, we may wish to predict a city’s weekend newspaper
circulation on the basis of retail sales and population density.
Consider these data:

city circulation (000) $ million retail sales pop./sq. mile

1 3.0 21.7 47.8
2 3.3 24.1 51.3
3 4.7 37.4 76.8
4 3.9 29.4 66.2
5 3.2 22.6 51.9
6 4.1 32.0 65.3
7 3.6 26.4 57.4
8 4.3 31.6 66.8
9 4.7 35.5 76.4

10 3.5 25.1 53.0
11 4.0 30.8 66.9
12 3.5 25.8 55.9
13 4.0 30.3 66.5
14 3.0 22.2 45.3
15 4.5 35.7 73.6
16 4.1 30.9 65.1
17 4.8 35.5 75.2
18 3.4 24.2 54.6
19 4.3 33.4 86.7
20 4.0 30.0 64.8
21 4.6 35.1 74.7
22 3.9 29.4 62.7
23 4.3 32.5 67.6
24 3.1 24.0 51.3
25 4.4 33.9 70.8

(Problem is from Terrell, Daniel, Business Statistics, 1975, Houghton
Mifflin, p. 269)

Regression
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A multiple linear regression of circulation in thousands (circ) on
retail sales (sales) and population per square mile (pop) yields the
following estimate of a linear relationship:

circ = .0575 (sales) + .0300 (pop) + .3446

Realizing that our estimate of this relationship may not be accu-
rate, we wish to establish confidence intervals around the esti-
mated coefficients for sales and pop, as well as the constant. In
common sense terms, we ask ourselves “What would the estimate
have been had we not picked these data points, but some others?”
It is impractical to gather additional data, but, following the logic
presented earlier in the section on the bootstrap, we can resample
with replacement from the data set we do have. In doing so, we are
letting our sample stand in as a proxy for the universe from which
it was drawn. Sampling with replacement allows the sample to
serve effectively as an infinite universe.

NOTE: “NOPRINT” OPTION

Each time you run a regression, RESAMPLING STATS automati-
cally prints out such basic information as the number of observa-
tions involved. When you run repeated randomized or
bootstrapped regressions, you may wish to omit the reporting of
this information for each trial. Otherwise, the program will be
delayed as the results for each trial are shown on the screen. To
eliminate this display, use the noprint option (see program below).

Maintaining case correspondence

When we bootstrap a regression relationship, of course, we must
retain the correspondence between the observations for the differ-
ent variables — we are sampling cases. In other words, we might
or might not select Seattle for a particular re-sample (or we might
select it twice or more). If we do select it though, we must select its
circulation, sales and population data and keep them in a row so
that Seattle sales always goes with Seattle circulation, etc. For this
reason, we do not use the SAMPLE command — we would have
no way of ensuring that it took the same elements in the same
order from the circulation, sales and population data vectors.

Rather, we GENERATE 25 random numbers between 1 and 25
(with replacement, of course), and use those numbers to indicate
the positions of data points to take from each of the data vectors.
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In RESAMPLING STATS:

READ file “news” circ sales pop Reads the data (first column
into a vector “circ,” second
column into a vector “sales,”
and third column into a vector
“pop”)

REGRESS circ sales pop a Regress circulation on sales
and population, yielding the
vector “a” of coefficients and
constant

REPEAT 1000

GENERATE 25 1,25 b Generate 25 numbers randomly
between 1 and 25; these will be the
positions of the records we take for
this bootstrap resample

TAKE circ b circ$ Take the circulation data points
corresponding to the positions
specified by “b”

TAKE sales b sales$ Similarly for sales

TAKE pop b pop$ Similarly for population

REGRESS noprint circ$ sales$ pop$ a$
Regress the bootstrapped circulation
data on the bootstrapped sales and
population data

SCORE a$ z1 z2 z3 Score the bootstrap regression result
vector to “z1” (sales coef) “z2” (pop
coef) and “z3” (constant)

END

PRINT a Print the actual regression estimate

PERCENTILE z1 (5 95) c1 Calculate the 5th and 95th percen tiles
of the trial results for the sales
coefficient

PERCENTILE z2 (5 95) c2 Similarly for the population
coefficient

PERCENTILE z3 (5 95) c3 And the constant

PRINT c1 c2 c3

C1 and C2 are the confidence limits for the first and second
coefficients, respectively, while C3 is the confidence limits for the
constant.
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Bootstrapping a regression – residuals
(program “cheese”)

Bootstrapping cases makes sense when the observations can be
thought of as a random sample from a population.  Often this is
not the case.  Consider these hypothetical data, which are the
results of a focus group studying how consumer acceptance of a
cheese product is affected by relative content of salt and fat.

A food company experiments with different levels of salt and fat in
a product (measured from a baseline that we’ll call “0 salt, 0 fat,”
though there are positive levels of each).  There are 13 different
trials resulting in 13 observations (five of which are all at the
baseline level).  Data on the levels of salt & fat and on resulting
consumer acceptance are in file “cheese.dat,” and below:

SALT FAT Consumer Acceptance

-1 1 4.2
-1 -1 2.8
1 1 7.4
1 -1 6.1

-1.41 0 3.4
1.41 0 6.6

0 -1.41 4.6
0 1.41 7
0 0 5.2
0 0 5.6
0 0 5.4
0 0 6.0
0 0 5.6

In the model used by the firm, product acceptance (PA) is re-
gressed on Fat, Salt, F*S, Fat squared, and Salt squared.

Clearly the salt and fat content values are not randomly chosen; in
fact they were carefully selected to yield good baseline information
plus maximum information about varying levels of salt and fat,
while minimizing costs.  Looked at on a two-dimensional plot, the
various combinations of salt and fat form a circle, with the 5
baseline observations in the center.

Fat

Salt

8

1

5

2

7

4

6

3

-1.41 -1 0 1 1.41

1.41

1

0

-1

-1.41

9–13
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We want to concentrate on the random component here and
bootstrap that.  We can think of each PA value as comprised of an
underlying component (which is a function of the chosen fat and
salt level), and a random component or error term:

�Obs. Value   = underlying value + «

use predicted value use bootstrapped residual

Bootstrapped value = y + «*

While we don’t know what the underlying value is, we can
estimate it through our regression (y).  And the residuals from the
regression will be our estimate of the random component.  Our
procedure is, therefore:

1.  Find residuals from original regression

2.  Take a bootstrap sample from them, add to the predicted values
to create a bootstrap sample of y-values

3.  Re-run the regression with the bootstrap sample of y-values,
record the new coefficients

4.  Repeat 2-3 many times

5.  Take appropriate percentiles of the recorded bootstrap
coefficients

READ file “cheese.dat” salt fat accept
‘First we need to read in the data, and create the various
interaction and squared terms

MULTIPLY salt fat saltfat

SQUARE salt saltsq

SQUARE fat fatsq

REGRESS accept salt fat saltfat saltsq fatsq model
‘Calculate the original regression; “model” is a vector holding
the coefficients for salt, fat, salt*fat salt squared, and fat squared.

‘Next create Resampling Stats vector names for the coefficients in
“model”:

TAKE model 1 b1

TAKE model 2 b2

TAKE model 3 b3

TAKE model 4 b4

TAKE model 5 b5

TAKE model 6 b0

LET predict = b1*salt+b2*fat+b3*saltfat+b4*saltsq+b5*fatsq+b0
‘Find the predicted values and, next, the residuals

➛
➛

➛
➛

^
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LET resid = accept-predict

REPEAT 1000

SAMPLE 13 resid resid$ ‘bootstrap the residuals

ADD resid$ predict accept$
‘add them to the predicted values to create a new vector
“accept$” of bootstrap Product Acceptance scores

REGRESS noprint accept$ salt fat saltfat saltsq fatsq
model$

‘Regress the bootstrapped Product Acceptance scores on
the original values for salt, fat, etc.; use the noprint option
to suppress screen output in the repeat loop

SCORE model$ b1 b2 b12 b11 b22 constant
‘keep score of the bootstrapped coefficients “b1” (salt),
“b2” (fat), etc.

END

PERCENTILE b1 (5 95) c1
‘Find the the intervals enclosing 90% of the bootstrapped
coefficients for salt, fat, etc.

PERCENTILE b2 (5 95) c2

PERCENTILE b12 (5 95) c12

PERCENTILE b11 (5 95) c11

PERCENTILE b22 (5 95) c22

PERCENTILE constant (5 95) const

PRINT model c1 c2 c12 c11 c22 const
‘Print the original regression coefficients, then the intervals

NOTE

You may need to add a “MAXSIZE model$ 10000” statement to the
beginning if you encounter “Vector maximum size exceeded”
errors on your computer.

Results:
MODEL    =     1.3806    0.76277     -0.025   -0.35092   0.051472
5.5607
(= coefficients and constant in the original regression)
c1 = 1.2184 1.5388
c2 = 0.59429 0.92848
c12 = -0.2686 0.20648
c11 = -0.53587  -0.17147
c22 = -0.11535 0.23294
const = 5.34 5.77

Conclusion:  The intervals for salt (c1) and fat (c2) are significantly
positive.  For salt-squared (c11) it is significantly negative.  For the
interaction term (c12) and for the fat-squared term (c22) the
intervals span zero.
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Serial correlation in a time series

Consider the following data on quarterly GNP growth and the
following question:

Are the points serially correlated? Is a high likely to be followed by
a high and a low by a low?

Figure 9: Quarterly U.S. GNP growth at annual rates

Serial correlation
(program “bus-cycl”)

To answer this question, we will use the same “sum of products”
technique we developed earlier to deal with correlation. In this
case, we are wondering whether points are correlated with their
neighbors. As before, we will use the fact that, when an array of
numbers is multiplied by another array in the same order (high
numbers matching high numbers and vice versa), the sum of the
products is higher than when they are rearranged in any other
order. In this case, we will be multiplying observations by their
neighbors.
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Therefore, the data are arranged (in a spreadsheet) in two columns
such that each number is opposite the number that precedes it:

TABLE 8.

a2 a1

a3 a2

a4 a3

. .

. .

. .
an an-1

(The same effect could be achieved with RESAMPLING STATS
by creating a COPY of our original data vector then
CONCATenating a dummy number onto the end of the
original and the beginning of the copy. Here, if we use 0 as a
dummy, we can then MULTIPLY the two vectors and WEED
out the zeroes, leaving us the product of each element and the
one that follows.)

First, we note the sum of the observed products. Then, after
READing the data into RESAMPLING STATS, we repeatedly
reshuffle one of the vectors, keeping score of the sum of the
shuffled products. If they are always less than the observed sum,
we can be confident that the apparent serial correlation did not
occur by chance.

In RESAMPLING STATS:

READ file “gnp.dat” gnp gnplag
Read our data file “gnp.dat” into
vectors called “gnp” and “gnplag”
(which is “gnp” lagged by one period)

MULTIPLY gnp gnplag q Multiply the “gnp” vector by the
“lagged gnp” vector

SUM q qsum Sum those products

REPEAT 1000 Repeat the following experiment 1000
times

SHUFFLE gnplag gnplag$ Shuffle the “lagged gnp” vector

MULTIPLY gnp gnplag$ q$
Multiply the original “gnp” vector by
a shuffled “lagged” vector

SUM q$ qsum$ Sum those products
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SUBTRACT qsum qsum$ result
Subtract the trial sum of products
from the actual sum of products. If
there is serial correlation in the data,
the actual sum should exceed nearly
all of the random sums

SCORE result scrboard Keep score of the result

END

HISTOGRAM scrboard Produce a histogram of the amounts
by which actual sums exceed trial
sums

From the histogram (Figure 10), we can easily see how often the
observed sum of products exceeds the randomized sums of
products.

Most of the time, the actual sum of products was higher than the
trial sum of products. However, 8% of our chance trials (at and to
the left of 0), produced sums of products as high as or higher than
the observed result. Here our estimated “p-value” is .08. We should
be wary of drawing any conclusions, though we might consider
the matter worthy of further investigation.

Figure 10:  Sum of products of quarterly growth rates and lagged growth
rates, shuffling the lagged rates, 1000 simulations


